225 research outputs found

    Using the right slope of the 970 nm absorption feature for estimating canopy water content

    Get PDF
    Canopy water content (CWC) is important for understanding the functioning of terrestrial ecosystems. Biogeochemical processes like photosynthesis, transpiration and net primary production are related to foliar water. The first derivative of the reflectance spectrum at wavelengths corresponding to the left slope of the minor water absorption band at 970 nm was found to be highly correlated with CWC and PROSAIL model simulations showed that it was insensitive to differences in leaf and canopy structure, soil background and illumination and observation geometry. However, these wavelengths are also located close to the water vapour absorption band at about 940 nm. In order to avoid interference with absorption by atmospheric water vapour, the potential of estimating CWC using the first derivative at the right slope of the 970 nm absorption feature was studied. Measurements obtained with an ASD FieldSpec spectrometer for three test sites were related to CWC (calculated as the difference between fresh and dry weight). The first site was a homogeneous grassland parcel with a grass/clover mixture. The second site was a heterogeneous floodplain with natural vegetation like grasses and various shrubs. The third site was an extensively grazed fen meadow. Results for all three test sites showed that the first derivative of the reflectance spectrum at the right slope of the 970 nm absorption feature was linearly correlated with CWC. Correlations were a bit lower than those at the left slope (at 942.5 nm) as shown in previous studies, but better than those obtained with water band indices. FieldSpec measurements showed that one may use any derivative around the middle of the right slope within the interval between 1015 nm and 1050 nm. We calculated the average derivative at this interval. The first site with grassland yielded an R2 of 0.39 for the derivative at the previously mentioned interval with CWC (based on 20 samples). The second site at the heterogeneous floodplain yielded an R2 of 0.45 for this derivative with CWC (based on 14 samples). Finally, the third site with the fen meadow yielded an R2 of 0.68 for this derivative with CWC (based on 40 samples). Regression lines between the derivative at the right slope of the 970 nm absorption feature and CWC for all three test sites were similar although vegetation types were quite different. This indicates that results may be transferable to other vegetation types and other site

    Spectrodirectional remote sensing : from pixels to processes

    Get PDF

    A new lab facility for measuring bidirectional reflectance/emittance distribution functions of soils and canopies

    Get PDF
    Recently, a laboratory measurement facility has been realized for assessing the anisotropic reflectance and emittance behaviour of soils, leaves and small canopies under controlled illumination conditions. The facility consists of an ASD FieldSpec 3 spectroradiometer covering the spectral range from 350 – 2500 nm at 1 nm spectral sampling interval. The spectroradiometer is deployed using a fiber optic cable with either a 1°, 8° or 25° instantaneous field of view (IFOV). These measurements can be used to assess the plant pigment (chlorophyll, xanthophyll, etc.) and non-pigment system (water, cellulose, lignin, nitrogen, etc.). The thermal emittance is measured using a NEC TH9100 Infrared Thermal Imager. It operates in a single band covering the spectral range from 8 – 14 mm with a resolution of 0.02 K. Images are 320 (H) by 240 (V) pixels with an IFOV of 1.2 mrad. A 1000 W Quartz Tungsten Halogen (QTH) lamp is used as illumination source, approximating the radiance distribution of the sun. This one is put at a fixed position during a measurement session. Multi-angular measurements are achieved by using a robotic positioning system allowing to perform either reflectance or emittance measurements over almost a complete hemisphere. The hemisphere can be sampled continuously between 0° and 80° from nadir and up to a few degrees from the hot-spot configuration (depending on the IFOV of the measurement device) for a backscattering target. Measurement distance to targets can be varied between 0.25 and 1 m, although with a distance of more than 0.6 m it is not possible to cover the full hemisphere. The goal is to infer the BRDF (bidirectional reflectance distribution function) and BTDF (bidirectional thermal distribution function) from these multi-angular measurements for various surface types (like soils, agricultural crops, small tree canopies and artificial objects) and surface roughness. The steering of the robotic arm and the reading of the spectroradiometer and the thermal camera are all fully automated
    corecore